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Abstract 
The essential problem in the estimation of a human elbow angle position using myoelectric or electromyography (EMG) is that the 
EMG features have non-linearity characteristics. The non-linearity of the EMG features influences the performance of the estimation. 
The objective of this paper is to develop an extended Kalman filter based on the time domain feature to predict the position of the 
elbow using a myoelectric signal. The contribution of this study is that the non-linearity of EMG feature can be linearized effectively 
on flexion and extension motion. This is achieved by linearizing the EMG feature in extended Kalman filter using first-order Tailor 
series. The Ag(AgCl) was used to collect the myoelectric activities from biceps muscle. In this study, the sign slope feature (SSC) 
extracted the EMG signal to get the evidence that is associated with the position of the elbow. The extended Kalman filter (EKF) was 
chosen to linearize and to approximate the elbow position using EMG features. The performance of the proposed method is 12.81% 
and 9.65 % for periodic and arbitrary motion, respectively. We have confirmed the success of the presented EKF method to improve 
the performance of the estimation. Further, the proposed method can be implemented to an assistive exoskeleton for elderly people 
or stroke patients for a better life. 
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INTRODUCTION 
Recently, the development of human and machine interaction 
has been progressed intensively. The electromyography (EMG) 
signal is the most bioelectric signal which is often used to 
control the machines such as prosthetics, wheelchair, 
exoskeleton, and teleoperation devices because the position, 
force, torque of the limb, and muscle fatigue can be predicted 
using the EMG signal [1]. EMG signal bears random and 
stochastic properties in nature [2]. In order to estimate the 
position of the human limb, a linear relationship between the 
EMG signal (or EMG features) and the joint angle is very 
important to obtain better accuracy in the estimation. However, 
the previous study shows that EMG features have non-linear 
characteristics.  

Some attempts have been studied to forecast the position of the 
upper limb's elbow joint using the EMG signal. A supervised 
machine learning based on pattern recognition based on back-
propagation multi perceptron, support vector machines, and 
neuro-fuzzy was often used to solve the non-linear 
characteristics of the myoelectric in the prediction [3]. 
However, the limitation of the using of those supervised 
machine learning is required to train the machine for each new 
input pattern and other weakness is an overfitting 
phenomenon. Another approach to estimate the joint position 
is by applying a non-pattern recognition (NPR) based method. 
The NPR based method is a method to predict the position of 
the elbow without a machine learning but authors preferred to 
used feature extraction, filtering techniques and optimization.  
The advantages of using NPR is that the prediction directly 
depends on the pre-processing stages. The Kalman filter was 
the most effective algorithm for estimating the condition of the 
system and was also used to predict the joint of the limb by 
previous studies [4] [5]. Kyrylova et al. suggested an upper limb 
elbow joint assistive system that used a combination of an EMG 
signal and a motion sensor to monitor the exoskeleton unit [6]. 
In the study, they used the Kalman filter to predict and correct 
the error in the estimation. Even though the proposed method 
resulted in high accuracy in the elbow joint angle estimation but 
those methods used an additional sensor (motion sensor) to 
detect the position of the elbow. This sensor could improve or 
reduce the accuracy, depending on whether the sensor position 
was correct or not because of the high sensitivity of the sensor. 

We have previously researched the efficiency of the Kalman 
filter to estimate the elbow position using the EMG signal. 
However, the proposed method was only evaluated using a 
periodic motion which can be assumed to have a linear 
response to the EMG features and approached to the linear 
Kalman filter. A complex or random motion of the elbow was 
more preferred to be evaluated because it was related to the 
human motion in daily life. Li et al. developed an assistive device 
for upper limb exoskeleton based on the EMG signal [7]. The 
pre-processing stages, which consist of high pass filter, full-
wave rectifier, low pass filter, linearly normalization and non-
linearly normalization, were performed before the Kalman 
filter was applied. However, this work was assumed that the 
EMG feature was in the linear condition after a non-linear 
normalization. Furthermore, in the elbow joint prediction using 
the EMG signal based on NPR, a feature extraction played an 
important role in the performance of the model. In the previous 
work, we have investigated the 12-time domain feature. Our 
finding showed that the Sign Slope Change (SSC) has better 
performance in relation to the human elbow motion [8].  

Previous research used a Kalman filter to estimate the elbow 
position by means of the EMG signal. A various pre-processing 
stage was applied before the Kalman filtering process.  
However, the limitation of using a linear Kalman filter is that it 
requires a state space and state observation in the linear 
function. The Kalman filter will fail as the estimator when the 
state is in the non-linear function. In order to solve the problem 
in the Kalman filter, an extended Kalman filter is proposed to 
solve the non-linearity of the state. In order to predict the 
position of the elbow, the EMG signal is required to be extracted 
to obtain the information associated to the position of the 
elbow. In this study, the SSC feature was chosen to do a feature 
extraction process due to the higher performance in the 
estimation  [8]. The linearization to the features was performed 
by applying the extended Kalman filter (EKF) which is based on 
a Taylor series [9]–[11]. Therefore, in order to solve the 
problems mentioned in the previous studies, the paper aims to 
build an extended Kalman filter model based on the SSC feature 
to estimate the elbow joint angle using electromyography 
(EMG) signal for flexion and extension motion. The impact of 
this study is that the proposed method can be used to linearize 
a non-linear state (sensor, features, etc.) relevant to the EMG 
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signal. The results of the study are expected to be able to 
estimate the position of the elbow joint with good performance 
compared to the conventional linear Kalman filter. 

This article is comprised of five sections, section 2 described the 
materials and method, section 3 presents results and discussion 
of the study, and finally, section 4 concludes the study and 
proposes a recommendation. 
 

MATERIALS AND METHOD 
Experiment Protocol 
A high-quality disposable Ag / AgCl electrodes (Ambu, 
BlueSensor R, Malaysia) were used to monitor the EMG signal 
output from the muscles of the biceps while the elbow 
performed an extension and flexion movement. A linear 
potentiometer was placed at the joint of the exoskeleton frame 
to measure the real angle and further, it will be used to calculate 
the root mean square error (RMSE) values. 

 

EMG amplifier + A/D converter

EMGA=ABS (EMG)

Feature extraction
Sign Slope Change

ϴEST = EKF (EMGN, Q, R)Evaluation: RMSE and correlation

EMGN  =
EMG-EMGMIN

EMGMAX-EMGMIN

Normalize features

Filtering

1

2

EMG signal

Measured angle

145ᵒ 

ϴEST

ϴMEASURED

Data Acquisition

 
Figure 1. The diagram block of the estimation 

 
A data acquisition unit consists of an EMG amplifier, A/D 
converter, microcontroller, and personal computer. A sequence 
of the digital signal processing is performed to obtain the elbow 
joint angle estimation as shown in Figure 1. In the data 
collection, the 10 healthy male subjects (20.5±2.3 years and 
60.5±4.6 kg) were involved for EMG data acquisition. 
 
Feature Extraction 
EMG signal contains a series of amplitude which represents the 
activities of the muscle. In order to obtain the information 
related to the motion, feature extraction is needed. Time-
domain feature extraction is widely used in the biomedical 
signal processing due to fast computation and low complexities. 
Feature extraction is mainly divided into three categories 
namely, based on energy, complexities, and frequency. The 
previous study revealed that the time domain features based on 
frequency have better performance than others. One of the 
features which showed the best performance is the sign slope 

change feature (SSC) [Eq. (1)]. The information related to this 
feature (SSC) can be found on this reference [8], [12]. 
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  (1) 
where xi shows the i-th signal, SSC is the selected time domain 
feature, N shows the length of the signal, f(x) is the function to 
decide the output condition, true or false value, and the 
threshold voltage is a predefined constant to limit the EMG 
signal. In this case, the window length is 200 samples.   
 

 
Figure 2. The non-linearity response of the EMG feature  (Sign Slope Change feature) for (a) flexion and (b) extension 

motion. 
 
In the preliminary research, it showed that the response of the 
EMG feature in the flexion and extension motion was a non-
linear function as shown in Figure 2. The non-linearity of the 
SSC feature can be approached to the second-order polynomial 

function. The flexion and extension pattern showed difference 
polynomial function as shown in Eqs. (2) and (3). 
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  (3) 
where the yfn, yen indicates the response (output) of the 
feature when the elbow performed the flexion and extension 
motion, respectively. The xn indicates the position of the elbow 
in degree unit. The second order in the xn variable shows that 
the SSC feature has a non-linear function. 
 
Extended Kalman Filter 
The reception of the EMG feature to the position was described 
in Figure 3. We can assume that the response has a non-linear 
function. The state and observation equation with an additive 
white Gaussian noise can be presented as shown in Eqs. (3) and 
(4). 

n n-1 n= +x Ax w
    

     
  (3) 

n n n n=h )+y (x v
    

     
  (4) 
where A indicates a transformation matrix which related the 
current state and previous state. In this case, the matrix A can 
be assumed as a scalar constant and equal to one. The 
observation state is presented by the non-linear function 
hn(xn). The parameter of wk and vk are the noise and supposed 
to be white Gaussian, zero mean and uncorrelated each other 
with the covariance, respectively. 

 T
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  (6) 
The non-linear function in observation state can be approached 
to be a linear function using first-order Taylor series as shown 
in Eq. (7)  

- -

n n n n n n nh (x ) h (x ) H (x -x ) +
  

         
  (7) 
where 

n
n -

nx

h
H |

x


=
     

             
  (8) 

is the Jacobian of the observation state and 

-
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estimation error. The Jacobian for both observation state 
(flexion and extension) from Eqs. (1) and (2) can be written as 
follows:  
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where Hfn and Hen are the Jacobian of observation state for 
flexion and extension motion, respectively. The Kalman filtering 
process is shown in Figure 3 consists of prediction, gain 
computation, update estimation, and update error covariance. 

The value of 1xk− and 1Pk−  needs to be defined in the initial 
state before the Kalman filter is calculated. Algorithm 1 shows 
the calculation of the extended Kalman filter. 
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xk = xk + Kk(zk – Hxk)

Pk = (I – KkH)Pk

Gain computation
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Figure 3. The Kalman filtering process 

 
 
 

 
 

Algorithm 1: Extended Kalman filtering 
 

Init      : 0 0x ,P
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7 end 
 
Evaluation 
The error of the estimation is computed using root mean square 
error (RMSE) as shown in Eq. (11). It calculated the error 
between the measured and estimated angle. Previous studies 
have used this parameter to validate the estimation results. The 
correlation coefficient (r) was also calculated in order to attain 
the association between the measured and predicted.  
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The correlation coefficient was calculated using Eq. (12).    
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where RMSE (root mean square error) is the error between the 
predicted and true value and r (Pearson’s correlation 
coefficient) is the coefficient which related between the 
predicted and the true value. 
 
RESULTS AND DISCUSSION 
The Estimation 
When the elbow moved in the direction of the flexion and 
extension (0 to 150º) then the EMG signal generated amplitude 
with the range of -1.25 mV to 1.25 mV following the joint angle 
as shown in Figure 4 (a). The EMG signal was generated 
randomly by the human body from negative to positive 
amplitude which the negative part was eliminated by rectifying 
the EMG signal. After the rectification stage, the EMG signal was 
processed using the sign slope change (SSC) feature. The 
advantage of this feature is that we can eliminate a low 
amplitude which can be considered as noise by adjusting the 
threshold value in the SSC equation (1). The EMG features were 
resulted after the feature extraction process, commence 
tracking the position of the elbow however with some ripples 
on the estimation. In addition, after applying the extended 
Kalman filter, we obtained that the approximate angle was 
closely matched to the elbow joint angle, as shown in Figure 
4(4)(b).  A representation of the estimation was shown in 
Figure 4 (b) which is the performance of the RMSE and 
correlation are 12.65º and 0.92, respectively. On the other type 
of motion (random motion), the result of this study, the EMG 
signal, and estimation are shown in Figure 5 (a) and (b), 
respectively. In this motion, the EMG signal has more complex 
activities than periodic motion. In this representation 
(estimation in random motion), the performance of the RMSE 
and correlation are 15.50º and 0.89, respectively.  
 

 
 

Figure 4. (a) The recorded EMG signal, (b) the predicted angle on periodik motion of flexion and extension using EKF 
method. 
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Figure 5.  (a) The recorded EMG signal, (b) the predicted angle on random motion of flexion and extension using the EKF 
method. 

 
A presentation of the prediction using the proposed (EKF) and 
standard (KF) method is shown in Figure 6(a) and 6(b). An 
estimation based on EKF and KF was represented by a black 
solid line and black dash line, respectively. Both of the 
estimations were able to follow the real angle (red line). 
However, the estimation based on KF has a larger offset than 
the EKF. In the estimation of periodic motion, the EKF and KF 
had an accuracy of 13.25° and 18.29°, respectively. In the 

random motion, the accuracy was lower than the periodic 
motion due to the complexities of the EMG features. Even 
though, the EMG features are more complex in the random 
motion but the EKF still able to predict the elbow position. A 
representation of the prediction for a random motion is shown 
in Figure 6(b). The accuracy of the EKF and KF in the random 
motion was 13.15° and 15.97º, respectively.  

 

 

 
Figure 6. The comparison of the performance of the estimation between extended Kalman filter and Kalman filter for (a) 

periodic and (b) random motion. 
 
Performance of the Proposed Method 
The performance (RMSE and correlation) of the estimation 
from 10 subjects was pooled, grouped based on EKF and KF 
methods, and analyzed using descriptive statistics. A boxplot 

diagram can be used to define the mean, median, minimum, and 
maximum values of the performance. In the periodic motion, 
the RMSE boxplot resulted from EKF showed lower error 
(15.11±1.85) than the KF method (RMSE=17.33º±2.76º) as 
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shown in Figure 7(a). On the other hand, the correlation boxplot 
resulted from EKF present higher correlation (0.87±0.042) than 
the KF (0.80±0.076) method as shown in Figure 7(b). In the 
random motion, the RMSE and correlation based on EKF 
method were 16.84º ±3.06º and 0.85±0.063, respectively. On 
the other hand, the performance of the estimation with the 
linear Kalman filter was 18.64º ±3.28º and 0.80±0.102 for 
RMSE and correlation, respectively. 
Here, superior results (RMSE and correlation) were also found 
in random motion when we performed the estimation with EKF 
(Figure 8). A T-test statistical was performed for both of the 

groups (EKF and KF) to find a significant difference in the 
performance. Table 1 and Table 2 show that there is a 
significant difference of performance  (p-value<0.05) between 
EKF and KF for periodic and random motion. The p-values are 
0.010 and 0.027 for periodic and random motion, respectively. 
Thus, the p-value is lower than the alpha (0.05) which is 
indicated that there was a significant difference of performance 
between EKF and KF. For all of data, the performance (RMSE) 
was improved at 12.81% and 9.65% for periodic and random 
motion, respectively. 

 

 
Figure 7. The performance of the estimation based on extended Kalman filter and Kalman filter for periodic motion. (a) in 

RMSE and (b) in Correlation. 
 

 
Figure 8. The performance of the estimation based on extended Kalman filter and Kalman filter for random motion. (a) in 

RMSE and (b) in Correlation. 
 

Table 1. The average value of the prediction (RMSE) in degree (º) unit based on extended Kalman filter and Kalman filter. 
The statistics T-test is performed with significant of 0.05. 

 
Parameter Periodic motion Random motion 

EKF KF EKF KF 
Average RMSE 15.11±1.85 17.33±2.76 16.84±3.06 18.64±3.28 
p-value 0.010 0.027 

 
Table 2. The average value of the prediction (RMSE) in degree (º) unit based on extended Kalman filter and Kalman filter. 

The statistics T-test is performed with significant of 0.05. 
Parameter Periodic motion Random motion 

EKF KF EKF KF 
Average Corr. 0.87±0.042 0.80±0.076 0.85±0.063 0.80±0.102 
p-value 0.00174 0.043 

 
In this study, we found that the performance of the estimation, 
in the random motion, was lower than periodic motion because 
the waveform of the EMG signal was more complex in the 
random motion. Another method which is based on non-pattern 
recognition (NPR) was developed by Pang et.al [13]. They used 
Hill-muscle based model to predict the position of the elbow 
joint. The performance of the estimation was 6.53º±3.2 º, 
22.0º±6.6º and 22.4º±5.0º for single, periodic continue and 
random motion, respectively. Here, we also found that in 
complex motion, the performance was lower than the others. 
Thongpanja et.al. investigated the relationship between the 
elbow joint angle and EMG feature in the frequency domain 
[14]. They found a linear relationship between the elbow joint 
angle and MDF (median frequency), with a coefficient of 

correlation of 0.86. As a comparison, another related study also 
proposed an elbow position based on a supervised back-
propagation artificial neural network (ANN) [15]. In this 
analysis, the performance was 10.7, 9.67, and 12.42 for a 
periodic motion of 2 s, 4 s and 8 s, respectively. A drawback of 
using the pattern recognition based method is that the model 
needed to be re-train for each new subject. 

The quality of the EMG signal can be influenced by many 
parameters such as the instrumentation amplifier, 
electrodeposition, sweat, and muscle fatigue [16]. The previous 
study has proved that localized muscle fatigue could affect EMG 
characteristics. In the fatigue condition, the amplitude is higher 
than in the non-fatigue condition and the frequency is shifted to 
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the lower frequency [17] [18] [19]. A fusing method which 
considers muscle fatigue is required in future work in order to 
maintain the accuracy of the estimate. In the related works, this 
proposed method, a linearizing the feature using EKF, can be 
used to solve a non-linear problem in a mechanical sensor for 
medical devices or industrial.  
 
CONCLUSION 
The results of this paper have shown the effectiveness of the 
extended Kalman filter in linearizing the non-linear response of 
the EMG function and estimate the elbow joint position. The 
main finding of this study is that the position can be predicted 
using the myoelectric signal which only from one group of 
muscle. The limitation of this work is that the proposed method 
is only tested for elbow joint angle prediction. In future work, 
the method could be implemented to the human and machine 
interaction to support human life. 
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